

A SELECTION GUIDE FOR THE COVERING OF ROLLS IN FUNCTION OF THEIR ENVIRONMENT

The tables below should serve as an aid in the selection of a covering in function of the conditions to which the application is subject.

Hannecard offers compounds of various elastomers. Your technical contact person will gladly assist you in the determining the suited product for your application.

Or laboratories are equipped with the most modern tools for testing the compatibility of our elastomers with your application.

We do tests on :

- Temperature
- Mechanical load
- Exposure to chemicals
- Dynamic performance

RELATED DOCUMENTS

- Technical info 'Hardness specifications'
- Technical info 'Geometrical & Dimensional tolerances'
- Technical info 'Mechanical services'
- Technical info 'Roll covering process'
- Technical info 'Roll finishing'
- Technical info 'Surface characteristics'
- Technical info 'Transport & Packaging'

AN OVERVIEW OF THE VARIOUS ELASTOMERS WHICH HANNECARD IS OFFERING

Symbol	Group name	Max. temp	Hardness Shore A	Important characteristics			
NR	Natural rubber	80°C	25 to 90	 Elasticity Good resistance against abrasion and tear Very good dynamical properties 			
SBR	Styrene Butadiene Rubber	90°C	60 to 95	Excellent abrasion resistance			
CR	Polychloroprene (Neoprene)		15 to 90	 Resistance against abrasion and tear Good dynamical properties Moderate resistance against acids, oils and solvents 			
NBR NIR XNBR	Nitrile Butadiene Rubber		25 to 95	 Excellent resistance against oils, greases and petroleum Good general properties with the exception of heat resistance, which is rather limited 			
EPDM	Ethylene Propylene		30 to 90	 Very good resistance agains acids, bases, oxydants and cetones, lacquers, varnishes and esters UV and ozone resistant 			
CSM	Hypalon (*)		45 to 95	 Excellent resistance against acids, bases and ozone Excellent resistance against abrasion and tear 			
IIR	Butyl		50 to 70	 Very good chemical resistance against acids, bases, oxydants, solvents, cetones, lacquers, varnishes, esters and ozon Gas tight Weak dynamical properties 			
Q	Silicone		20 to 90	 Non-stick properties Resistant against high temperature and ozone Very good electrical insulating properties 			
FKM	Fluoro-elastomer		60 to 90	 Excellent resistance against hydrocarbons, chlorinated solvents, aromatic solvents, acids, bases, oxydants, and vapor Excellent temperature resistance 			
ECO CO	Epichlorydrine		70 to 95	 Electric conductor Moderate resistance against acids, bases, oils and solvents 			
ACM	Polyacrylate	175°C		Good resistance against oils			
HNBR XHNBR	Hydrogenated nitrile		60 to 90	 Very good general physical properties Stability of hardness when used at high temperature 			
PU	Polyurethane	80 -	15 to 98	 Excellent resistance against abrasion, cutting en perforation Good ozone resistance Performances linked to the selected type of PU 			
Composite	Epoxy Polyester	100 -	75 to 85 Shore D	 Very high modulus and good physical properties Good chemical resistance 			

(*) DuPont trademark

RESISTANCE AGAINST LOAD

Legende		5		Je	e						Be			
*** ++ ×	Excellent Good Fair Inadvisable	Natural rubbe	Styrene-Buta diene	Polychloroprer (Neoprene)	Vitrile Butadier Rubber	Ethylene Propylene	Hypalon (*)	Butyl	Silicone	Fluoro-rubbe	Epichloorhydri	Polyacrylate	Hydrogenated nitrile	Polyurethane
		NR	SBR	CR	NBR	EPDM	CSM	IIR	Q	FKM	ECO	ACM	HNBR	PU
Physica	l characteristics													
	Tensile strength	***	++	***	++	++	++			++		×	***	***
	Rupture	***	++	++	–	***	++	++	–	—	–	×	++	***
	Wearing	***	***	++	++	++	++	++	×	++	++	•	***	***
	Pressure	***	++	++	++	++	—	—	—	++	++	–	++	***
	Resilience	***	++	***	–	++	–	–	++	-	–	×	•	++
	Flexion	***	++	***	++	++	++	++	–	×	++	—	++	++
Ageing	behaviour	1	1	1	1		1		1		1	1	1	<u>.</u>
	Air	•	++	***	++	***	***	***	***	***	***	***	***	***
	Light	–	_	***	_	***	***	***	***	***	***	***	++	–
	Ozone	•		++	—	***	***	***	***	***	***	***	++	***
Temper	Temperature resistance				,									
	Heat	•	+ +	++	++	***	++	++	***	***	++	***	***	★★★ to▼
	Flame	×	×	++		_	++	–	++	***	++	•	_	
	Cold	***	++	•		***	++	++	***	++	++		–	++
Electric	al insulation													
	Resistivity	***	++	▼		++		++	***		×	▼	▼	++
	Dielectric properties	***	++	▼	–	++	–	×	***	–	×	–	▼	++
Resista	nce to fluids	-		-	-	7	-	7	-	7	-	-	,	7
	Hydrocarbons	×	×	++	***	•	++	•	×	***	***	***	***	*** to▼
	Aliphatic solvents	×	×	++	***	•	++	•	×	***	***	***	***	*** to ▼
	Aromatic solvents	×	×	•	++	•	–		×	***	++	***	++	–
	Cetones	***	++	•	×	***	–	++	–	×	×	×	×	×
	Chlorinated solvents	×	×	×	×	×	×	×	×	***	×	•	×	×
	Water	***	++	++	++	***	***	***	++	***	++	++	++	–
	Gas tightness	•		▼	++	•	–	***	++	***	++	•	▼	×
	Diluted acids / Acid cleaners	++	++	***	++	***	***	***		***	***	-	++	-
	Strong acids	++	V	++	V	***	***	***	V	***	++	×	–	×
	Strong oxidizing acids	×	×	~	×	▼	++	-	×	***	-	×	×	×

MORE INFORMATION?

For more information, please contact your local Hannecard partner or visit our website at : <u>www.hannecard.com</u>

(*) DuPont trademark